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Detection of M. leprae by 
Microscopy
Detection of acid-fast bacilli (AFB) by microscopy is recognized as the fastest, easiest, and least 
expensive tool for the rapid identification of leprosy cases. In many regions where leprosy is en-
demic, diagnosis is based purely on the detection of skin lesions and sensory loss. Although serol-
ogy or PCR-based procedures have shown their value for leprosy diagnosis, bacilloscopy, which 
consists of the detection of AFB in lymph samples or in a microtome section of a skin biopsy, is still 
the basis for confirming clinically suspected leprosy (see Chapter 2.4). The preparation of micro-
scopic slides from lymph samples is simple; however, the histopathologic analysis of skin biopsies 
is far more complex, as it demands personnel who are trained in the collection, fixation, prepara-
tion, and interpretation of skin and/or nerve biopsy slides. Although the specificity of acid-fast 
microscopy is excellent for Mycobacterium species and some related genera such as Nocardia 
and Rhodococcus, its sensitivity is less than that of other procedures.

The most commonly used staining technique to identify Mycobacterium leprae was first described 
by the bacteriologist Franz Ziehl (1859–1926) and the pathologist Friedrich Neelsen (1854–1898) 
as a simple improvement of Robert Koch’s complex staining method. While Ziehl was the first to 
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use carbolic acid (phenol) as the mordant in primary staining solution, Neelsen used basic fuch-
sin as the primary stain, resulting in the method known as Ziehl-Neelsen staining in the early to 
mid 1890s (1). Initially, the procedure applied heat so that the primary stain could penetrate the 
Mycobacterium waxy cell walls (“hot staining”). However, in 1915, Kinyoun published the “cold 
staining” variant, replacing the use of heat with the use of a higher concentration of carbolfuchsin 
in the primary stain (2). Mycobacterium species are stained bright red by carbolfuchsin and stand 
out clearly against a methylene blue background. Anderson was the first to relate the acid-fast 
property of M. tuberculosis to the presence of a membrane rich in a specific compound, mycolic 
acid. Mycolic acids confer resistance to decolorization by acids, including ethanol and hydrochlo-
ric acids, during staining procedures. Hence the term “acid-fast” (3).

When searching for the leprosy bacillus in smears or tissue samples, Ridley and Jopling estab-
lished that a negative result should only be reported following the examination of at least 100 
microscopic oil immersion fields, as recommended for tuberculosis (4). For that reason, the cor-
rect histological analysis is time-consuming and laborious. The number of bacilli identified by this 
method, together with the clinical and histopathological features, helps classify the disease form. 
The Ridley and Jopling classification of leprosy utilizes the bacilloscopic index (BI; see Chapter 
2.4), varying from a score of 0 to 6, and is based on a logarithmic scale in which 0 represents the 
absence of bacillus; 1+ represents 1–10 bacilli in 100 fields; 2+, the presence of 1–10 bacilli in 
10 fields; and 3, 4, 5, and 6+ represent the identification of 1–10, 10–100, 100–1000, and >1000 
bacilli per field, respectively (4).

The Ziehl-Neelsen and Kinyoun methods remain reliable ways to visualize the presence of acid-
fast bacteria in human exudates smears. However, a more recent adaptation of the Kinyoun stain-
ing method, the Fite-Faraco method, is currently the preferred staining procedure to identify M. 
leprae in human tissues (see Chapter 2.4). The main adaptation in the Fite-Faraco method is the 
dilution of the solvent xylene in the vegetable oils used during the deparaffinization step, because 
M. leprae is much less acid- and alcohol-fast than M. tuberculosis and thus can easily be missed 
in the examination of the slide.

The use of fluorochromes as alternatives for acid-fast staining was introduced with the auramine 
O-based method described by Hagemann (5) and the auramine-rhodamine–based method by 
Truant. Both stains result in strong orange fluorescently stained mycobacteria (6). A comparative 
study on staining procedures was performed using acid-fast sputum smear examinations for the 
detection of M. tuberculosis and demonstrated that the Truant method is the most sensitive, 
followed by Ziehl-Neelsen, and the Kinyoun method less sensitive (7), but there are no similar 
comparative data for M. leprae. In the last decade, the development of antibodies against M. lep-
rae antigens and novel light microscopy-based techniques have become available, improving the 
imaging of M. leprae in human tissues and allowing observation at a higher resolution and with 
better sensitivity, with great impact on research but, unfortunately, with no practical contribution 
in diagnosis (8).
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Highlights

•	 Acid-fast microscopy is still the most frequently used detection tool for confirmation 
of leprosy.

•	 Fite-Faraco staining is the preferred method for staining M. leprae.

•	 Bacterial load (acid-fast bacilli counts) is associated with clinical forms of the disease.

•	 Microscopy in general provides low sensitivity in paucibacillary cases and the differen-
tiation of Mycobacterium leprae from other Mycobacterium species is impossible.

•	 The bacterial index (BI) indicates the number of bacilli present in a specimen (see also 
Chapter 2.4 Appendix).

•	 Microscopy based on fluorochromes and antibodies against M. leprae provide higher 
sensitivity but are not used for routine diagnosis.

FIG 1 Staining of M. leprae.

A.	 Kinyoun staining of purified M. lep-
rae harvested from a nude mouse 
footpad.

B.	 Fite-Faraco staining from a multi-
bacillary leprosy skin lesion (cour-
tesy of Dr. Sergio Antunes).

C.	 Confocal fluorescent immunocy-
tochemistry of Schwann cells (red 
using antibody against S100) in-
fected with M. leprae (green using 
antibody against PGL-1). Nuclei are 
blue with DAPI staining (courtesy of 
Dr. Victor Tulio Resende). Scale bar 
equals 13 µM in A; 20 µM in B and 
C.
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Detection of M. leprae by Nucleic 
Acid-Based Tools
Although the detection of acid-fast bacilli (AFB) in tissue smears, lymph, or histological sections 
using various staining methods is satisfactory for confirming the diagnosis of more advanced lep-
rosy, this procedure is less effective for diagnosing leprosy in the early stages, when clinical mani-
festations are not always clearly established, and in some paucibacillary (PB) cases. Because of 
the low specificity and sensitivity of serological tests (mainly for PB cases) (9), the low sensitivity 
of microscopy (1–3 x 104 AFB/g), and the inability to differentiate M. leprae from other myco-
bacteria by microscopy, the use of nucleic acid-based methods for detecting M. leprae has been 
widely investigated.

The first report on the use of nucleic acid-based detection of M. leprae came from Clark-Curtiss 
and Docherty in 1989 (10). They described the use of a 2.2-kb M. leprae DNA fragment that al-
lowed the specific detection of bacilli in material from multibacillary (MB), but not PB, patients 
by a hybridization-based procedure. In the same year, Woods and Cole (11) described the use of 
PCR for selective amplification of part of the M. leprae-specific repetitive sequence RLEP, describ-
ing agarose gel-based visualization of about 100 M. leprae cells present in armadillo liver, mouse 
footpads, and human biopsies. Using a heat-stable Taq DNA polymerase, Hartskeerl et al. (1989) 
(12) described specific amplification of the M. leprae gene encoding a 36 kDa protein, with a de-
tection limit approximating one organism. Subsequently, several other PCR systems for M. leprae 
detection were developed, revealing detection limits ranging from one to 1000 bacilli (13, 14, 15, 
16, 17, 18). Mostly agarose gel-based observations of amplicons have been reported, but some 
studies mention the use of hybridization to membranes (9), colorimetric assay in microtiter plates 
(19, 20, 21, 22), three primer systems (23), dot blot hybridization (24), nested PCR (25), peptide-
nucleic-acid-ELISA (PNA-ELISA) (26), reverse line probe (27, 28), or high throughput reverse blot-
ting (29) to detect amplicons.

Initially, purified M. leprae DNA, armadillo tissue, and fresh or paraffin-embedded skin biopsy 
samples were the most common specimens used for PCR, and several protocols for their treat-
ment for PCR have been described with variable PCR yields (30, 31, 32, 33). With the develop-
ment of procedures for DNA extraction of different types of tissues, PCR-based detection of M. 
leprae DNA in other clinical specimens such as skin smears, nerve biopsy, urine, oral and nasal 
swabs, blood, lymph node, hair bulbs, and ocular lesions became feasible.

Different PCR systems, targets, and applications for detecting M. leprae are summarized in Table 
1. In 1993, Santos et al. (17) described the use of the PCR system described by Woods and Cole 
(11) with the inclusion of a hybridization step with an internal oligonucleotide, allowing the de-
tection of 100 attograms of pure M. leprae-DNA, equivalent to one-tenth of a bacterial genome. 
Besides PCR-assay design, the quality of target DNA and the presence of PCR inhibitors can influ-
ence PCR yields. In addition, sample type and DNA extraction procedures are important for effec-
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tive PCR assays. Santos et al. (17) evaluated extraction procedures on fresh skin biopsies, blood, 
and lymph fluid from the ear lobes of both MB and PB patients. Their results showed that simple 
freezing-boiling cycles in the presence of Triton X100 and pre-treatment with NaOH to eliminate 
PCR inhibitors was sufficient to yield amplification of bacterial DNA even in samples from PB 
patients. Simple methods for the extraction of DNA from clinical samples have been developed 
involving proteinase K-Tween 20 treatment without any further DNA purification (30). In that 
study, good PCR results were obtained using frozen or buffered formalin fixed biopsy samples. 
Negative results were obtained when samples were fixed with mercuric chloride or non-buffered 
formaldehyde in a study by Fiallo et al. (34). Pattyn et al. (35) reported an increase in PCR sensitiv-
ity when storing human biopsy or mouse footpad samples at room temperature for some weeks 
and the preferential use of 70% ethanol when compared to 10% formol for sample preservation. 
One elegant alternative for collecting and storing blood and lymph fluid from slit-skin smears is 
the use of Flinders Technology Associates (FTA) cards (36) as well as Ziehl-Neelsen slides for PCR 
detection of M. leprae (37) and genotyping (38). The use of commercial kits for sample process-
ing has become routine practice; however, standardization is critical to avoid problems of PCR 
inhibition (39, 40).

When comparing PCR in skin biopsies of patients with different forms of the disease, Williams 
et al. (41) demonstrated that, besides confirmation of all MB cases, over 70% positivity was ob-
tained in PB (smear negative) patients; a similar finding was described by Yoon et al. (42). In 
situ PCR of the skin lesion was later proposed for diagnosis in PB cases (43). Caleffi et al. (44) 
described a procedure amplifying a smaller fragment of the pra gene targeted by Parkash et al. 
(45) for the detection of M. leprae in urine samples of both tuberculoid (TT) and lepromatous (LL) 
leprosy patients. The procedure and results showed the potential for confirming the presence of 
M. leprae in TT cases that generally present negative AFB slit-skin smears. The influence of the 
size of the amplicon on PCR yield has also been described (46).

Very recently, Rosa et al. (47) investigated a loss of sensitivity in the oral cavities (see Chapter 
2.4) of untreated leprosy patients by evaluating the presence of M. leprae in saliva using RT-PCR 
mediated amplification of the 85AC intergenic region. Although no direct relation between the 
presence of bacteria and loss of sensitivity was observed, positive saliva qPCR results from six 
out of 19 (31.6%) PB cases strongly suggested the potential of this clinical specimen for leprosy 
diagnosis. The presence of M. leprae in the oral epithelium was also confirmed by Morgado de 
Abreu et al. (48), suggesting that organisms shed from the oral cavity could be involved in disease 
transmission.

It has been shown that PCR can affect the diagnosis and treatment in cases of suspected early 
leprosy, even in the absence of confirmation by other diagnostic procedures (49). In such cases, 
however, extreme care and control of the PCR conditions should be practiced (50). Besides aiding 
the diagnosis of disease, nucleic acid amplification has been used to define populations at risk 
for disease development. De Wit et al. (51) investigated nasal swab specimens from clinically di-
agnosed leprosy patients to establish bacterial carriage among patients and evaluate the passive 
carriage and transfer to contacts of M. leprae in the nasal mucosa in endemic areas. Amplifica-
tion products were found in 55% of untreated patients, 19% of the occupational contacts, 12% of 
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endemic controls, and none of the nonendemic controls, confirming the importance of the upper 
respiratory tract as a route of entrance, exit, and passive carriage in persons without symptoms 
of active disease. Pattyn et al. (52) found more positives in the nasal swabs of contacts from MB 
cases when compared to PB, but some of these MB cases had already been successfully treated. 
Santos et al. (53) confirmed the use of this sample for the detection of infected individuals at risk 
for developing the disease. But in 1994, van Beers et al. (54) reported that in an endemic region 
for leprosy, many individuals can carry M. leprae in their nose without symptoms of disease and, 
therefore, it is difficult to consider them at higher risk to develop leprosy. In addition, positive 
nasal swabs for M. leprae was not always related to the presence of disease (55, 56, 57). Prefer-
entially, the evaluation of PCR data should be combined with the observation of other biomarkers 
for M. leprae and the use of different clinical samples (58). Monitoring transmission to contacts 
by PCR and, eventually, other diagnostic procedures has also been used in non-endemic countries 
such as Colombia (59, 60). In Brazil, PCR in nasal swabs together with anti-PGL-1 detection was 
used to detect subclinical infection in household contacts (61, 62). More data indicative that na-
sal carriage contributes to disease came from Bakker et al. (63), who demonstrated that patients 
with positive swabs have the highest transmission potential. Interestingly, Patrocinio et al. (64) 
demonstrated the invasion of nasal mucosa passing through the nasal inferior turbinate to reach 
peripheral blood.

Other types of samples were also investigated for the detection of subclinical infection, one of 
which was based on the microscopic observation of acid-fast bacilli in the hair follicles of leprosy 
patients, including PB cases, by Desikan et al. (65). Positive PCR was observed by Santos et al. (53) 
in hair bulbs from PB patients and from different areas of the body but not necessarily linked to 
the site of the lesion. However, Job et al. (66) demonstrated that both skin and nasal epithelia 
of untreated MB cases contribute to the shedding of M. leprae and cause a risk of infection for 
patient contacts. In 2004, Almeida and colleagues (67) performed RLEP PCR on blood and nasal 
swabs of healthy household contacts of leprosy patients and concluded that the test was not a 
valuable tool for defining individuals at risk. The data suggested a false association of PCR posi-
tivity and further development of leprosy. It should be emphasized that conventional PCR may 
not measure the viability of M. leprae, so the presence of M. leprae DNA may not predict infec-
tion and subsequent disease, or indicate the viability or death of bacilli during and after treat-
ment. Nonetheless, positive PCR in the blood of index cases considerably increased the chance of 
household contacts developing the disease (68).

Conventional PCR has been evaluated for assessing viable bacillary load (30) and for follow up 
during and after treatment (69, 70). Interestingly, Santos et al. (71) observed that approximately 
half of the patients with indeterminate leprosy (I) were still PCR positive in one of their clinical 
samples analyzed by RLEP-PCR, four to eight years after they were discharged from MB or PB 
treatment schemes. The highest positivity rate was seen in blood samples, suggesting that live 
or dead bacilli are present and circulating much longer than expected (see Chapter 2.4). Conven-
tional PCR is of limited value for indicating the efficacy of chemotherapy due to the amplification 
of DNA from dead bacilli (71). In addition, the reinfection of successfully treated individuals can-
not be excluded, as observed in relapse cases in Brazil after therapy was completed (72) and as 
suggested by Rafi et al. (73).
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In 1998, Kurabachew et al. (74) described the use of reverse transcriptase PCR (RT-PCR) targeting 
16S rRNA for the detection of viable M. leprae, taking advantage of the high turnover rate of RNA. 
Jadhav et al. (75), Phetsuksiri et al. (76), Chae et al. (77), and Hirawati et al. (78) reported similar 
approaches for detecting the transcripts of the genes coding for the 18 kDa or 36 kDa proteins. 
This approach presents higher sensitivity and specificity than conventional PCR and, besides de-
tection, allows for the quantification of M. leprae DNA (79, 80, 81, 82, 83, 84, 85, 86, 87, 88). 
Rudeeaneksin et al. (84) described the use of the M. leprae 16S rRNA gene as a target, allowing 
the detection of 20 fg of M. leprae DNA, equivalent to four bacilli, in skin biopsy specimens. Their 
results demonstrated 100% concordance with the clinical diagnosis of MB leprosy and 50% with 
that of PB. Martinez et al. (79) compared conventional and real-time PCR on frozen skin biopsy 
specimens from 69 leprosy patients using the antigen 85B-coding gene or the 85A-C intergenic 
region as a target for amplification. Using this approach, the detection and quantification of M. 
leprae DNA was possible in cases in which no bacilli were observed in conventional histological 
staining. Shamsi (89) performed both types of PCR on the 85 A-C intergenic region and confirmed 
the presence of M. leprae DNA by conventional PCR while estimating the copy number in ocular 
tissues from leprosy patients. Truman et al. (86) found excellent correlative results between RLEP 
TaqMan PCR and direct microscopic counting, permitting the detection of low numbers of bacilli 
and the rapid analysis of batch samples with high reproducibility. Martinez et al. (85) performed 
qPCR on frozen skin biopsy samples from untreated MB and PB leprosy patients as well as ten 
patients suffering from other dermatological diseases and five healthy donors. Interestingly, the 
PCR was positive in three cases not diagnosed as having leprosy and these patients developed 
leprosy 5–10 years after the collection of the biopsy. Four more non-leprosy cases were positive, 
suggesting that the patients had had the disease earlier or had subclinical leprosy. These results 
suggest that RLEP assay could be useful as a sensitive diagnostic test for detecting an M. leprae 
infection before major clinical manifestations.

Conventional and semi-quantitative PCR (using reverse transcription for comparison of RNA- and 
DNA-based targets) has been used for evaluating the efficiency of therapy. This use demonstrated 
that the monitoring of bacillary DNA and mRNA in lesions can be instructive with respect to dis-
ease progression and treatment regimen, as described in more detail in Chapter 5.3.

It is particularly difficult to diagnose the purely neural form of leprosy (PNL; see Chapter 2.5) 
(90). According to Ridley and Jopling (91), PNL occurs across the spectrum from the borderline 
lepromatous (BL) to the tuberculoid (TT) form. Because of the absence of skin lesions and clear 
histopathological features in the nerve, these patients cannot be classified as PB because they 
do not present bacilli in the skin smears (92). Thus, the diagnosis of PNL cases is always a chal-
lenge; however, PCR has been demonstrated to be a helpful tool for this purpose (90, 93, 94, 
95). Bezerra da Cunha FM et al. (93) evaluated 58 patients believed to have PNL using RLEP-PCR 
on nerve biopsy. Fifty percent (50%) of the cases were positive, including 14 out of 38 cases that 
were negative for AFB. In the same year, Martinez et al. (79), using conventional and TaqMan RT-
PCR assays, analyzed normal skin samples from six patients exhibiting PNL. Five of the patients 
were positive for the presence of M. leprae DNA, despite the absence of skin lesions. Related to 
the infection of the nerve system, Aung et al. (96) reported M. leprae by PCR in the spinal chord 
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and the cerebral cortex (97), while De et al. (98) reported a unique case of isolated tenosynovitis 
as the sole manifestation of PNL.

PCR also can help to differentiate leprosy from other diseases that present hypochromic or granu-
lomatous lesions such as pityriasis alba, leishmaniosis, cutaneous tuberculosis (TB), sarcoidosis, 
and co-infections with other mycobacterioses as discussed in the chapter on the differential diag-
nosis of leprosy (see Chapter 2.3).

PCR-meditated detection of M. leprae has been used successfully with material from human re-
mains (see Chapter 11.1) (99, 100). Such studies revealed that co-infection of M. leprae and M. 
tuberculosis could have led to the decline of leprosy (101) and that ancient M. leprae in medieval 
Europe was of the SNP genotype 3 (102) and in Japan was type 1 (103). Mendum et al. (104) re-
ported that a shift from the type 2 strains to the later observed European and associated North 
American type 3 isolates may have occurred in Scandinavia and England during the 11th century. 
Interestingly, the use of PCR-mediated detection of M. leprae also demonstrated that leprosy 
cases were buried using the Nabe-kaburi method, indicating a social stigma against infectious 
diseases in 15th- to 18th-century Japan (105). A remarkable conservation of the M. leprae ge-
nome over time has been observed (106), and palaeomicrobiologic findings of leprosy have been 
reviewed by Donoghue (107).

Finally, the PCR-mediated detection of drug-resistant M. leprae (see Chapter 5.2) was first de-
scribed by Williams et al. (108), who used a procedure for the simultaneous detection of M. 
leprae and resistance to dapsone. Later, direct PCR sequencing of genes associated with the resis-
tance to rifampin and fluoroquinolones was added, allowing the detection of multi-drug resistant 
(MDR) leprosy. Although mostly limited to MB cases, MDR resistance has also been detected in 
PB leprosy (47). Other tools for drug detection such as RT-PCR, digital PCR, and whole genome 
sequencing can detect minor populations of resistant bacteria with much higher sensitivity and 
may become useful procedures for future studies.

Highlights

•	 Nucleic acid-based detection techniques for M. leprae are becoming a standard of care 
for supporting the diagnosis of leprosy.

•	 Semi-quantitative PCR (qPCR) and reverse transcriptase-based PCR (RT-PCR) systems 
have been developed with enhanced sensitivity over conventional PCR, depending on 
the target gene or DNA sequence measured.

•	 The repetitive sequence RLEP is a promising target for PCR, allowing the detection of 
approximately one M. leprae genome.

•	 PCR-based detection is not positive in many PB biopsies (i.e., the sensitivity is not high 
in PB disease).
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Detection of M. leprae in the 
Environment
Despite being studied for centuries, leprosy transmission has not been clearly elucidated. The 
main transmission source seems to be undiagnosed MB patients, most likely through spreading 
and absorption via the nasopharyngeal airway (109). Person-to-person transmission by direct 
contact or through respiratory secretions has not been proven; however, cases of leprosy have 
been described in the absence of contact with other leprosy cases. The presence of M. leprae 
in non-human sources and the environment could be partly responsible for the maintenance of 
leprosy endemicity in some parts of the world.

Numerous studies have identified the presence of M. leprae in rivers, wells, and soil samples. The 
identification of M. leprae has been based on a variety of detection procedures, including micros-
copy, mouse footpad assay, and identification by DNA/RNA amplification (110). Authors have sug-
gested that soil (111, 112), water (113), insects (114), hemiptera (115), plants (116), armadillos 
(Chapter 10.2), and rodents (Chapter 10.3) could act as non-human sources of infection. Yet the 
notion of free-living M. leprae persisting in the environment is biologically improbable (117) due 
to its compromised genome (Chapter 8.2) resulting from reductive evolutionary changes.

Viability studies of M. leprae (see Chapter 5.3) by reverse transcriptase-PCR of 16S RNA has re-
sulted in the detection of significantly more samples with viable bacilli in the soil in areas where 
leprosy patients resided (111, 118, 119, 120). Although these “live bacteria” were likely shed 
from infected humans, as demonstrated by characterizing SNPs that define the main M. leprae 
lineages, infectivity was not demonstrated. Nonetheless, Desikan et al. (121) showed that M. lep-

Highlights (cont’d)

•	 Many clinical samples (e.g., skin, saliva, lymph, blood, hair bulb) can be examined for 
M. leprae DNA.

•	 PCR tests have helped diagnose the pure neural form of leprosy.

•	 PCR-based detection of M. leprae has been used to identify infected individuals at risk 
for developing leprosy. However, because of the high sensitivity of PCR-based systems, 
positive results can be due to passive carriage of bacilli.

•	 Nucleic acid-based analysis enables the differentiation of leprosy from other dermato-
ses.

•	 PCR can be used in paleomicrobiology (see Chapter 11.1), genotyping, and detection of 
drug-resistant strains of M. leprae.



The In te rna t iona l  Tex tbook  o f  Leprosy Detec t ion

1 0 	 P a r t  I I    B a s i c  S c i e n c e s

rae can survive in a diverse set of environmental conditions in soil or water for weeks and even 
months and maintain infectivity in the mouse footpad assay.

Unfortunately, there are several methodological barriers to identifying a non-cultivable bacte-
rium from a complex sample such as soil that may contain many of the 150+ Mycobacterium 
species, including uncultured environmental isolates. Thus, recognizing that soils and aquifers are 
environments naturally rich in unknown and non-cultivable mycobacteria, care should be taken 
not to base our assumptions on the presence of a single marker for M. leprae without confirma-
tion by sequencing a large number of M. leprae-specific genes.

Highlights

•	 Doubts remain regarding the contribution of non-human sources of M. leprae to infec-
tion and disease transmission.

•	 Besides infected humans, possible sources of infection are the environment, insects, 
and other vectors and animals.

•	 Conventional PCR for detection can be supported by viability testing using RT-PCR.

TABLE 1 PCR assays for Mycobacterium leprae detection

DNA Target PCR method Material Results References
RLEP, rpoT, 
SodA, and 
16S rRNA

PCR Slit-skin smear 
(SSS), blood, 
soil samples 
of leprosy 
patients 
and their 
surroundings

The RLEP gene target was 
able to detect the presence 
of M. leprae in 83% of SSS, 
100% of blood samples, and 
36% of soil samples and was 
noted to be the best out of 
all other gene targets.

Turankar et al. 
2015 (122)

ML0024 qPCR Peripheral 
blood

M. leprae DNA was detected 
in 22% of leprosy patients: 
23.2% in PB and 21.4% 
in MB. Positivity among 
contacts was 1.2%.

Reis et al. 2014 
(68)

RLEP TaqMan real-
time PCR

Paraffin 
embedded skin 
biopsy

The PCR detection rate for 
PB specimens was 74.5%. 

Yan et al. 2014 
(88)
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TABLE 1 PCR assays for Mycobacterium leprae detection

DNA Target PCR method Material Results References
MntH PCR Paraffin blocks 

containing 
biopsy samples 
from tongue, 
buccal mucosa, 
and soft palate.

M. leprae DNA was detected 
in 78% of patients.

Morgado de 
Abreu et al. 2014 
(48)

RLEP and 
TTC

Multiplex-PCR Fine needle 
aspiration from 
the peripheral 
nerves of PNL.

M. leprae could be elicited 
in the nerve aspirates in 
84.6% of the samples. 

Reja et al. 2013 
(123)

RLEP and 
TTC

Multiplex-PCR Biopsy PCR sensitivity was 87.8%, 
positive predictive value 
(PPV) was 95.6%, and 
negative predictive value 
(NPV) was 71.2%. 

Reja et al. 2013 
(124)

GroE-L (65-
kDa) 

Nested-PCR Whole blood M. leprae DNA was detected 
in 95.92% of MB, 70% of 
PB, and 6.25% of household 
contacts.

Wen et al. 2013 
(125)

pra (36-kDa) PCR Urine samples M. leprae DNA was detected 
in 46.6% of the cases. The 
positivity for patients with 
the TT form was 75%. In 
LL, the positivity was 52% 
and 30% for patients under 
treatment and non-treated 
patients, respectively.

Caleffi et al. 2012 
(44)

RLEP Multiplex PCR Skin biopsy and 
slit-skin smear

PCR positivity was 82.3%. Banerjee et al. 
2011 (126)

ML0024 qPCR Lesion in the 
palate

Before treatment the PCR 
was positive ; however, 
after MDT, the result was 
negative.

Da Silva Martinez 
et al. 2011 (81)

RLEP PCR Slit skin smears 
preserved 
using FTA elute 
cards and 70% 
ethanol tubes

M. leprae DNA was detected 
in 60% and 58% of samples 
preserved in FTA elute 
cards and 70% ethanol, 
respectively.

Aye et al. 2011 
(36)

16S rRNA PCR Stained slit-skin 
smear negative 
slides

M. leprae DNA was detected 
in 32.6% of the samples. 

Kamble et al. 
2010 (37)
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TABLE 1 PCR assays for Mycobacterium leprae detection

DNA Target PCR method Material Results References
16S rRNA PCR Skin biopsy The detection rate in MB 

and PB were 100% and 50%, 
respectively.

Bang et al. 2009 
(127)

16S rRNA LightCycler 
real-time PCR

Skin biopsy 100% of concordance with 
clinical diagnosis in cases of 
MB and 50% of PB leprosy.

Rudeeaneksinet 
al. 2008 (84)

85 A-C 
intergenic 
region

Conventional 
and real-time 
PCR

Paraffin-
embedded 
ocular tissue

M. leprae DNA can be 
detected using RT-PCR when 
acid-fast bacteria are seen in 
histopathological sections.

Shamsi et al. 
2007 (89)

Antigen 
85B-coding 
gene and 
85A-C 
intergenic 
region

Conventional 
and TaqMan 
real-time PCR

Frozen 
skin biopsy 
specimens

The detection rate in MB 
was 100% and ranged 
from 62.5% to 79.2% in PB 
according to the assay used.

Martinez et al. 
2006 (79)

RLEP PCR Nasal mucosa 
biopsies

Sensitivity of 69.2%, 
specificity of 89.9%, and an 
accuracy of 82.8%

Patrocínio et al. 
2005 (64)

pra (36-kDa) Real-time PCR Skin biopsies The sensitivity ranged from 
33.3% to 88.9% in PB and 
MB patients, respectively.

Kramme et al. 
2004 (82)

RLEP PCR and 
southern 
hybridization 

Blood and 
nasal swabs 
from healthy 
household 
contacts

Positivity in blood and nasal 
secretion was 1.7%. 

Almeida et al. 
2004 (67)

pra (36-kDa) PCR Urine DNA of M. leprae was 
detected in 36.4% of 
lepromatous leprosy and 
in 40% of tuberculoid. The 
positivity among treated 
patients was 66.6%, while it 
was only 20% for untreated 
patients.

Parkash et al. 
2004 (45)

15kDa PCR Nasal 
mucus from 
asymptomatic 
household 
contacts

Bacillus was detected in 
12.8% of the household 
contacts.

Guerrero et al. 
2002 (128)
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TABLE 1 PCR assays for Mycobacterium leprae detection

DNA Target PCR method Material Results References
RLEP PCR Blood, lymph, 

hair, nasal 
secretion, and 
skin biopsy

First report on detection 
of M. leprae DNA in PB 
patients, more than 5 years 
after completion of MDT.

Santos et al. 
2001 (71)

RLEP PCR Blood, lymph, 
nasal secretion, 
and hair. 

No conclusive diagnosis 
by traditional methods. 
However the individual was 
found to be infected with M. 
leprae after amplification of 
the bacterial DNA.

Santos et al. 
1997 (129)

LSR/15kDA PCR Skin biopsy and 
slit-skin smears

PCR was specific and 
sensitive, with a detection 
level of 10 and 100 bacilli. 
Skin biopsies gave a higher 
detection rate than did slit-
skin smears.

Misra et al. 1995 
(24)

pra (36-kDa) PCR Fresh biopsy 
and slit-skin 
smear

In MB, 87.1% of biopsy 
specimens and 41.9% of slit-
skin smears were positive. 
In PB, 36.4% of biopsy 
specimens and 18.2% of 
slit-skin smear specimens 
yielded detectable PCR 
amplification.

Wichitwechka et 
al. 1995 (130)

pra (36-kDa) PCR Sputum 
and slit-skin 
samples 
from treated 
patients

25% of patients were found 
to be PCR positive.

Rafi et al. 1995 
(73)

pra (36-kDa) PCR Nasal swab 
specimens

Among the total tested 
population, 7.8% were 
found to be PCR positive.

Klatser et al. 
1993 (131)

pra (36-kDa) PCR Neutral 
formalin-fixed 
biopsy samples 
and frozen 
biopsy

Frozen sections: 100% 
positive in samples from 
untreated AFB-positive 
patients and 56% of the 
untreated AFB-negative. 
Fixed samples: 92% positive 
in samples from untreated 
AFB-positive and 61% of 
the samples from untreated 
AFB-negative. 

de Wit et al. 
1991 (30)
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