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Introduction
Prior to the advent of microbiology, infectious diseases had no known etiology and therefore 
were often qualified as hereditary. With the advances in medicine, the key role of microbes in the 
etiology of infectious diseases was recognized. However, with the description of latent infections 
it became clear that in addition to pathogens, unknown host factors are required to establish 
disease. We know now that a substantial proportion of factors that make a host vulnerable to 
infectious disease are germline encoded. While much remains to be discovered, in leprosy the 
role of host genetic factors in disease susceptibility has made remarkable advances over the last 
15 years. Genetic epidemiology methods ranging from twin studies to genome wide association 
studies (GWAS) have helped to unravel the host genetic contribution to leprosy susceptibility. 
Variants of genes involved in both innate and adaptive immune responses have been identified as 
key mediators in different stages of leprosy pathogenesis. Here, we present a summary of genetic 
mediators for leprosy and leprosy-related disease manifestations that have been implicated in 
susceptibility in multiple studies.
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LEPROSY: AN INFECTIOUS DISEASE, A HEREDITARY 
DISEASE, OR BOTH?
Leprosy is a dermato-neurological infectious disease caused by the intracellular parasite Myco-
bacterium leprae (1). However, this characterization was not always the consensus among scien-
tists. In the mid-nineteenth century, it was believed that leprosy was in truth a hereditary disease 
that could only be transmitted among family members. The Norwegian physician Daniel Corne-
lius Danielssen proposed the heredity concept of leprosy in 1857 in the book entitled Om sped-
alskhed (On leprosy). Danielssen implied that leprosy was a congenital dysplasia not caused by a 
pathogen (2). It was Danielssen’s son-in-law Gerhard Armauer Hansen who identified M. leprae 
as the cause of leprosy in 1873 (1). Leprosy is indeed an infectious disease; however, Danielssen 
also was correct regarding the role of heredity in leprosy. Heredity is an allusion to a genetic com-
ponent impacting disease outcome. Human genetics was still in its infancy in Danielssen’s era, 
and the limited knowledge about the genetic control of complex traits severely hampered stud-
ies of heredity in leprosy (3). It was only in the 1960s that epidemiological studies accumulated 
convincing data in support of a genetic component in leprosy susceptibility.

THE HEREDITY IN LEPROSY SUPPORTED BY 
GENETIC EPIDEMIOLOGY DATA
Prior to the advent of DNA-based genetics, epidemiological studies based on observational data 
and prediction models inferred that there was a genetic component in susceptibility to leprosy. 
For example, twin studies showed a strong contribution of host genetics to leprosy per se suscep-
tibility and clinical leprosy subtype (4, 5). In two independent twin studies, concordance of lep-
rosy in monozygotic twins was 82.6% and 59.7%, while concordance in dizygotic twins was 16.7% 
and 20.0%, respectively (4, 5). Among the leprosy-affected pairs of monozygotic twins, concor-
dance for leprosy subtype was larger than 85% in both studies (4, 5). Since monozygotic twins 
share the same germline, while dizygotic twins share only a proportion of their genetic material, 
these results provided strong support for an important role of host genetics in leprosy. Similarly, 
analysis of the segregation pattern of leprosy in multiplex families of distinct ethnic background 
including Caribbean, Brazilian, Vietnamese, and Thai inferred that a genetic component in leprosy 
susceptibility existed. This approach, termed complex segregation analysis (CSA), estimates the 
contribution of environmental, familial, and genetic factors that best explain the disease segrega-
tion pattern. If a genetic component is inferred, the model of inheritance, the penetrance, and 
the frequency of the genetic component can also be estimated. Most of the CSA consistently 
detected evidence of a major gene impacting on leprosy susceptibility with a background of ad-
ditional genes with milder effects, although there was no consensus for the mode of major gene 
inheritance (6, 7, 8, 9, 10, 11, 12, 13). Twin studies and CSA provided the rationale for molecular 
investigations in search of the genetic component in leprosy.
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Genetic Control of Host Respons-
es to M. leprae at Different Stages 
of Leprosy Pathogenesis
Leprosy is a complex disease with multiple factors influencing the outcome of exposure to M. 
leprae. Undoubtedly, intensity and length of exposure to M. leprae are central for leprosy patho-
genesis, albeit little is known about this key step due to our inability to cultivate M. leprae in vitro. 
Following exposure, a combination of environmental and host genetic factors discriminates those 
who will become infected without clinical signs from those who will progress to clinical disease 
and commits a subset of patients to adverse immune reactions. In a scenario where environmen-
tal factors intervene at all phases of the human/M. leprae interaction, the impact of host genetics 
can be dissected in different stages (Figure 1).

INNATE RESISTANCE
The majority of people exposed to M. leprae are innately resistant to clinical leprosy. This conclu-
sion was derived from epidemiological studies in which more than 90% of household contacts of 
multibacillary leprosy cases did not progress to clinical disease (Figure 1) (14, 15, 16). However, 
in contrast to tuberculosis (TB), where latent infection is deduced from a positive Tuberculin Skin 
Test (TST) or by Interferon Gamma Release Assay (IGRA), in leprosy no biological assay for latent 
infection is available. Therefore, among those who are resistant to clinical disease it is not pos-
sible to identify those who are susceptible to infection, and it is not known if humans do become 
latently infected with M. leprae. However, it is likely that innate resistance to infection may ac-
count for much of the genetic contribution to leprosy. Possible mechanisms of innate resistance 
to infection in leprosy are unknown but may represent resistance to host cell infection or rapid 
clearance of phagocytosed bacilli before the establishment of latent infection (Figure 1). Alterna-
tively, it is possible that a large number of exposed humans are latently infected with M. leprae 
but only few ever progress to clinical disease. There are several notable examples of the inabil-
ity to invade host cells in other infectious diseases. In HIV, a deletion in the CCR5 gene causes a 
knockout and obstructs the route of viral invasion (17). In malaria, cell-specific knockouts for the 
Duffy blood group receptors (FyFy) mediate innate resistance to Plasmodium vivax infection (18, 
19). The possibility that infection resistance is mediated by early bacterial clearance or the pres-
ence of adverse conditions that lead to a decreased ability of parasite survival is supported by TB 
and HIV infection (Figure 1). In HIV, for example, individual carriers of a combination of KIRDL1/
HLA-B*57 present superior and earlier viral clearance (20). In malaria, patients heterozygous for 
the sickle-cell mutation present premature erytosis of plasmodium infected cells and the acceler-
ated apoptosis delays parasitemia, favoring bacterial clearance (21).
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FIG 1 The stages of leprosy pathogenesis and the corresponding phenotypes employed 
for genetic studies.

Genetic factor may contribute to different stages of leprosy pathogenesis ranging from 
innate infection resistance to variants modulating host pathological immune responses. 
Given sufficient exposure to M. leprae, an individual may progress from exposure to in-
fection or present an early resistance phenotype. Innate resistance may be defined by a 
genetic profile that may impair the ability of bacterial invasion or favor a more efficient 
bacterial clearance. Persons who are destined to develop clinical leprosy will advance 
to a pre-clinical stage common to all forms of leprosy that is termed leprosy per se. The 
genetic factors that contribute to leprosy per se may be different from those that impact 
the clinical immunological response to M. leprae. Patients with clinical forms of leprosy 
display a variety of immune responses ranging from a strong cellular immune response 
(tuberculoid) to a strong humoral immune response (lepromatous). Yet, the majority of 
leprosy patients display a balance of cellular and humoral responses and are classified 
as borderline leprosy cases. The specifics of the host immune response are controlled by 
host genetic variants that modulate the cytokine profile in responses to M. leprae. Cer-
tain leprosy patients may experience excessive inflammatory responses known as leprosy 
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reactions. There are two major types of leprosy reaction Type-1 reaction and Type-2 reac-
tion. Both are characterized by a delayed activation or exacerbation of cellular immune 
responses which are at least in part controlled by host genetic factors.

CLINICAL DISEASE AND LEPROSY SUBTYPES
Leprosy per se, which is leprosy irrespective of the clinical subtype, is a widely used phenotype 
(Figure 1). It is not known what stage of leprosy pathogenesis is captured by the per se pheno-
type. Given that all clinical subtypes are governed by the per se definition, the most parsimoni-
ous explanation is that leprosy per se reflects an early stage of non-symptomatic pathogenesis. If 
this explanation is correct, leprosy per se genes and mechanisms would determine the transition 
from a latent infection to clinical disease (Figure 1). This interpretation is supported by reports 
of high rates of self-healing leprosy in the absence of antibiotic intervention (Figure 1) (22, 23). 
Self-healing is most pronounced if clinical symptoms are mild and has been reported to occur in 
up to 70% of non-lepromatous cases, demonstrating the continuum of leprosy pathogenesis (22, 
23, 24). Hence, per-se genes likely impact on different stages of latent infection and, as the infec-
tion progresses and manifests itself as clinical disease, different sets of genes impact on leprosy 
subtype. Patients with self-healing—before or after the emergence of clinical symptoms—could 
be a reservoir for ongoing transmission of leprosy. However, independently of late bacterial clear-
ance or not, patients suffering from leprosy per se share a common genetic component that is 
fundamental for the clinical manifestation of disease (Figure 1).

Leprosy presents a good opportunity to evaluate the host genetic contribution to clinical symp-
toms of an infectious disease, since M. leprae is essentially monoclonal (Figure 1) (25). Hence, 
susceptibility is mainly influenced by environmental factors and by host genetics. Following the 
first signs of clinical infection, each leprosy patient will develop a particular adaptive immune re-
sponse. Some patients have the capability to develop granuloma and contain the infection. These 
patients are characterized as tuberculoid and present a cytokine profile of an effective cellular 
immune response (Figure 1). On the opposite side of the spectrum are patients with lepromatous 
leprosy, who are permissive for extensive bacillary replication. These patients develop a humoral 
immune response that is not effective for bacterial containment (Figure 1). The majority of lep-
rosy cases will present a balance between cellular and humoral immune responses and are com-
monly referred to as borderline leprosy patients (Figure 1). The host genetic control of different 
leprosy subtypes is a largely understudied area of leprosy pathogenesis (26).

ADVERSE IMMUNE RESPONSES
An interesting aspect of leprosy pathogenesis is that protective immune reactions can be clearly 
separated from those that cause host tissue damage. In leprosy, up to 50% of patients develop 
excessive inflammatory responses know as leprosy reactions (LR) (27). LR afflict leprosy patients 
during the course of the disease or even after microbiological cure and are a major cause of tissue 
damage and disabilities (28, 29). There are two major types of LR: the type-1 reactions (T1R) and 
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the type-2 reactions (T2R). T1R are more frequent and mostly affect individuals classified in the 
borderline spectrum of leprosy (28). T2R affect only patients of the lepromatous and borderline 
subtype who display strong humoral immune responses. LR are characterized by a shift towards a 
cell-mediated immune response with a strong and rapid boost in TNF and IFN-γ production (30). 
LR present a unique opportunity to study the modulatory factors in the host immune response to 
pathogens. A dysregulated pro-inflammatory response to a pathogen is an immune characteristic 
in Crohn’s disease (CD) and a main cause of tissue damage in dengue (31, 32, 33, 34).

Genetic Approaches Applied to the 
Study of Human Susceptibility to 
Leprosy
Different approaches have been applied to identify the host genetic factors uncovered by epide-
miological studies and CSA. From a candidate gene approach to hypothesis-free genome wide 
testing, multiple factors have been connected with clinical disease or subtypes. The research ef-
forts since the beginning of the century have resulted in a better picture of the host contribution 
to disease outcome (Figure 2). Nevertheless, we are still far from explaining the strong genetic 
component reported by twin studies.

CANDIDATE GENE APPROACHES
The candidate gene approach was the first strategy used to describe the molecular identity of the 
genetic component in leprosy. It is a powerful strategy if the biological process contributing to 
disease pathogenesis is well known. Focusing on genes most likely to be relevant to a disease re-
duces the risk of false positive findings due to multiple comparisons. There are several examples 
in leprosy in which candidate gene associations have been successfully replicated in independent 
populations.

Studies of the ABO system

The first reports of a specific gene associated with leprosy pathogenesis focused on the ABO 
blood type, with many studies performed since the 1920s (35, 36). The ABO gene is located on 
chromosome region 9q34.2, where amino acid changes in exons 6 and 7 differentiate the AB 
blood groups while the O blood group represents a frame shift mutation. Individual studies of the 
ABO system in leprosy have reported no correlation of blood types and disease susceptibility (37, 
38, 39). In 1967, compiled information of 27 independent population from 14 countries indicated 
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no correlation of ABO and Rh with leprosy per se or its clinical forms (35). Subsequent work em-
ploying an alternative statistical approach and increased sample size detected a loose association 
between leprosy per se and ABO blood groups (36). Individuals with the A blood type were more 
susceptible to leprosy per se in a dominant model than the B or O blood types. Moreover, the O 
blood type was more frequent among lepromatous cases (36, 40, 41, 42). The effect of the ABO 
system in leprosy is likely very subtle, since almost half a million samples were needed to capture 
the weak association signal with the disease. Therefore, the ABO gene explains very little of the 
genetic susceptibility to leprosy.

The Toll-like receptor family

The Toll-like receptors (TLRs) are an important class of pattern recognition receptors (PRP) involved 
in the host defense against a broad spectrum of pathogens (43). In leprosy, cell surface expressed 
heterodimers of TLR1, TLR2, and TLR6 mediate cell activation by recognizing M. leprae antigen 
(44, 45). Two amino acid substitutions in TLR1, I602S (rs5743618) and N248S (rs4833095), were 
associated with leprosy phenotypes (46, 47, 48). The 602S allele of TLR1 was associated with pro-
tection for leprosy per se in Indian and Turkish populations, but this association was not validated 
in Brazilian and Chinese populations (46, 47, 49). Moreover, the 602S allele was associated with 
protection from T1R in Nepalese (48). TLR1 carrying the 602S allele inhibits surface trafficking of 
the TLR1/TLR2 dimer, resulting in hypo-responsiveness to Mycobacteria (50, 51). The 248S allele 
of TLR1 was associated with susceptibility to leprosy per se in independent samples from Brazil 
and a sample from Bangladesh (47, 52). The S248 allele alters the electrostatic surface potential 
of TLR1, influencing protein interaction affinity (47). Both I602S and S248N polymorphisms have 
been associated with susceptibility to intracellular pathogens, suggesting an important role for 
these two variants that is not exclusive to leprosy (53, 54).

Variants in TLR2 and TLR4 have been associated with leprosy phenotypes. A synonymous amino 
acid substitution N299N (rs3804099) and a microsatellite in the TLR2 gene region were associ-
ated with T1R in Ethiopians (55). In leprosy lesions, TLR2 was shown to mediate in vivo apoptosis 
of Schwann cells contributing to nerve injury, which is a hallmark of T1R (56). TLR4 is mostly 
known as a lipopolysaccharides (LPS) receptor but it can also bind other microbial molecules. Two 
TLR4 missense polymorphisms, D299G (rs4986790) and T399I (rs4986791), were associated with 
leprosy per se (57, 58). The 299G and 399I alleles of TLR4 were risk factors for leprosy per se in 
Ethiopians and Indians (57, 58).

Interleukins

Interleukins are secreted by leukocytes and play an important role in cell-cell communication and 
in the modulation of host defense against infection (59). In leprosy, interleukins are essential for 
an effective cellular immune response and to develop infectious granuloma to contain M. leprae 
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dissemination (60). A key modulatory cytokine in the cellular immune response is IL12. The IL12 
cytokine is formed by two subunits, 12p35 and 12p40, that are encoded by the IL12A and IL12B 
genes, respectively. IL12 exerts its function through the interaction with its receptor, which con-
sists of two subunits encoded by the IL12RB1 and IL12RB2 genes. The IL12B gene is expressed by 
macrophages to induce the differentiation of Th1 cells (61). Variants near the IL12B gene have 
been associated with leprosy phenotypes in multiple populations. A variant in the IL12B 3’ UTR 
was associated with a risk for leprosy per se and TB in India and with leprosy subtypes in Mexico 
(62, 63). Common variants located in the vicinity of the IL12B gene were also associated with 
leprosy per se and multibacillary leprosy in Indian and Chinese patients (64, 65, 66). Variants in 
the promoter region of the IL12RB2 gene were associated with a leprosy subtype in a Japanese 
population but not in a Brazilian study (67, 68). No association was reported for the IL12RB1 gene 
in leprosy (69). The 12p40 subunit is part of IL23 and therefore interacts with the IL23 receptor. 
Copy number variants in the IL23R gene region have been shown to be associated with a leprosy 
clinical subtype (65).

IL10 is the most studied interleukin in leprosy (70). IL10 inhibits the production of pro-inflamma-
tory cytokines by effector cells such as macrophages and Th1 cells. IL10 activates the humoral 
immune response and induces antibody production in leprosy patients. The SNP rs1800890 lo-
cated at -819 bases upstream to the IL10 transcription starting site (TSS) was associated with 
leprosy per se in multiple populations (71). The most common association with leprosy per se 
and clinical subtypes was the haplotype containing the three TSS polymorphisms at positions 
-1082 (1800896), -819 (rs1800871), and -592 (rs1800872) in Brazilian, Colombian, and Indian 
populations (71, 72, 73, 74, 75). A recent meta-analysis of ten studies of the IL10 gene in leprosy 
phenotypes confirmed the association of the TSS promoter variants with leprosy per se (70). 
Interestingly, a meta-analysis of TB cases also reported the haplotype of the -819 and -592 SNPs 
associated with susceptibility to TB in the same direction as observed in leprosy per se. However, 
the association was limited to individuals with an Asian ethnic background (76, 77). An IL10 pro-
moter haplotype—which included SNPs associated with leprosy—impacted on IL10 expression, 
providing a possible mechanism for the modulation of IL10 function by genetic risk factors (78).

Other associations of interleukin genes have been reported for leprosy phenotypes. A study in an 
Indian population detected an association of the IL17F missense H161R polymorphism (rs763780) 
with leprosy per se (79). However, a subsequent study in a Mexican population failed to validate 
the IL17F association (80). A Brazilian study focused on LR showed the independent association of 
two IL6 polymorphisms with T2R (81). The IL6 variants -174 (rs1800795) and +6804 (rs2069840) 
associated with T2R influenced IL6 gene expression and were correlated with circulation levels of 
IL6, respectively (81, 82). Variants near the IL18 receptors have been associated with leprosy per 
se in Chinese patients (66). The IL18RAP and IL18R1 genes are clustered with the IL1RL1 gene on 
chromosomal region 2q12.1. The associated signal observed in the Chinese population extended 
across these three genes and did not differentiate which gene(s) in the locus was (were) the cause 
of association with leprosy per se.
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The lectin pathway

The mannose binding lectin (MBL) is involved in pathogen recognition and clearance by the in-
nate immune response (83). A haplotype overlapping the MBL2 gene (encoding MBL) was associ-
ated with susceptibility to leprosy per se and clinical subtypes in Brazilian and Chinese popula-
tions (84, 85). Moreover, association of the missense G54D polymorphism (rs1800450) in MBL2 
exon 1 was validated for a leprosy clinical subtype in a population sample from Nepal but not in 
an independent Brazilian sample (86, 87). MBL activates the complement pathway by co-opting 
MBL-associated serine proteases (MASPs) (88). Two genes, MASP1 and MASP2, encode MASP 
proteins. Five polymorphisms near the MASP2 gene were associated with susceptibility to leprosy 
per se in a Brazilian sample (89). The complex formed by MBL with MASP1 and MASP2 can cleave 
complement proteins C2 and C4 and induce pathogen opsonisation (88). Alleles of the C4B gene 
were associated with lepromatous leprosy and susceptibility to T2R (90). The ficulin-2 protein en-
coded by the FCN2 gene is a complement activating lectin that forms a complex with MASPs (91). 
Variants near the promoter region of the FCN2 gene have been associated with leprosy per se and 
clinical subtypes in Brazilian and Chinese populations (85, 92). Finally, variants near the CFH gene, 
encoding the complement regulating factor H, were associated with leprosy in a Chinese popu-
lation (85). Taken together, these results demonstrate the participation of the lectin pathway in 
leprosy per se and clinical subtype susceptibility.

Additional candidate genes

The active form of vitamin D modulates innate and adaptive immune responses (93). The VDR 
gene encodes the vitamin D receptor and is expressed by macrophages in response to TLR1/2 
stimulation (94). Two functional VDR polymorphisms were associated with leprosy phenotypes. 
A VDR synonymous SNP I352I (rs731236 alias Taq1) located in a splicing site was associated with 
leprosy subtypes and granuloma formation (95, 96). A missense M1T polymorphism (rs2228570 
alias Fok1) at the first amino acid of a VDR isoform showed a trend for association with T1R (86). 
Interestingly, VDR expression has been associated with progression to leprosy reaction (97). A 
forward genetic screen in zebrafish identified the lta4h gene as a hyper susceptibility factor (98). 
Two non-coding SNPs (rs1978331 and rs2660898) at the human LTA4H gene were associated 
with multibacillary leprosy in a population from Nepal (98). Due to the role of beta-defensin 1 
in epithelial innate immunity, a study evaluated the association of the DEFB1 gene in leprosy. 
The DEFB1 5’ UTR variant rs1800972 was associated with leprosy per se and a clinical subtype 
in a Mexican population (99). M. leprae was shown to invade myelinating Schwann cells by rec-
ognizing and binding laminin alpha 2, which in humans is encoded by the LAMA2 gene (100). A 
missense V2587A variant (rs2229848) of LAMA2 was associated with a leprosy subtype in a Bra-
zilian population (101). Type II interferon (IFN-γ) is a critical cytokine of the innate and adaptive 
immune response against intracellular pathogens (102). A promoter polymorphism at position 
+874 (rs2430561) of the IFNG gene was associated with leprosy per se in independent Brazilian 
populations (103, 104). A lower expression of BCL10 was reported in lesions of leprosy patients 
when compared to healthy controls (105, 106). The SNP (rs2735591) near the BCL10 gene was 
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associated with leprosy per se in three independent population samples from China (106). A com-
mon outcome in leprosy is nerve injury, which frequently leads to permanent disabilities (27). 
The NINJURIN1 protein encoded by the NINJ1 gene has been implicated in the cellular repair 
mechanism in Schwann cells after nerve injury (107). A NINJ1 missense A110D polymorphism 
(rs2275848) has been associated with protection from disabilities in two independent Brazilian 
samples (108, 109).

A newly recognized class of endogenous controllers of gene expression are named microRNAs 
(miRNAs). Alterations in miRNAs structure may influence their ability to exert their function prop-
erly. In leprosy, the polymorphism rs2910164 in the seed region of Pre-miR-146a encoded by the 
MIR146A gene has been associated with susceptibility to leprosy per se in independent popula-
tions from Brazil (110). Functionally, it was shown that M. leprae induced MIR146A expression in 
THP-1 cells. Moreover, nerve biopsies of leprosy cases exhibited a higher expression of MIR146A 
compared to nerve biopsies from pathologies not related to leprosy (110). However, there was 
no evidence of a direct impact of the leprosy per se risk variant on MIR146A activity. An indepen-
dent study implicated microRNA-21 in a clinical subtype of leprosy via the vitamin D antimicrobial 
pathway (111).

Summary of candidate genes studies

Resistance or susceptibility to M. leprae invasion relies on different stages of host immunity. The 
first line of defense against external pathogens is provided by sentinel cells, such as macrophages 
and dendritic cells, of the innate immune response. These cells express PRP that belong to the 
toll-like receptor family and components of lectin pathways. Candidate gene approaches have 
helped to identify key genes in this early phase of host-pathogen interaction. Associations of 
TLR1, MBL2, and FCN2 with leprosy have been confirmed in independent populations, suggesting 
that alterations in these genes are critical to facilitate M. leprae invasion. In response to pathogen 
recognition, host sentinel cells kick-up the production of interleukins. Indeed, candidate gene ap-
proaches showed that the IL23R, IL12B, and IL17F genes are associated with leprosy susceptibil-
ity. These genes are important regulators that direct the adaptive immune response towards Th1 
and Th17 cells. Patients with an efficient cellular immune response are more likely to contain M. 
leprae dissemination.

GENOME WIDE LINKAGE APPROACHES TO GENE 
DISCOVERY IN LEPROSY
Genome wide linkage studies (GWLS) are hypothesis-free analytical approaches that investigate 
the non-random transmission of a genomic region among affected individuals in a family-based 
approach. A series of GWLS have identified host genomic regions as likely locations of leprosy sus-
ceptibility genes. However, among the chromosomal regions identified by GWLS, only a few have 
led to the identification of leprosy susceptibility genes via the fine-mapping of the linked regions.
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Region 2q35

The murine Slc11a1 (alias Nramp1) gene located on chromosome 1 in mice controls susceptibil-
ity to a variety of intracellular pathogens (112, 113, 114, 115). The human SLC11A1 gene has 
been implicated in leprosy risk by multiple studies. An extended haplotype overlapping the SL-
C11A1 gene was linked with leprosy per se in Vietnamese patients (116). A SNP located in intron 4 
(rs3731865) was associated with paucibacillary leprosy in Indonesia (117). Heterozygosity for a 3’ 
untranslated insertion/deletion of the SLC11A1 gene was a risk factor for multibacillary leprosy in 
Mali (118). The SLC11A1 exon 3 UTR variant -274C/T (rs2276631) was reported as associated with 
both T1R and T2R with opposite risk effects in Brazilians (119). Interestingly, two GWLS in Viet-
namese samples linked chromosomal region 2q35, which in humans harbors the SLC11A1 gene, 
with the capacity to mount an in vivo granulomatous response to lepromin (a so-called Mitsuda 
reaction) (120, 121). Subsequent studies identified an SLC11A1 promoter variant in association 
with the extent of the Mitsuda reaction in Brazilians (122).

Region 10p13

The first GWLS in leprosy described the chromosomal region 10p13 in linkage with paucibacil-
lary leprosy in an Indian sample of multiplex families (123). A subsequent GWLS in Vietnamese 
families confirmed the initial report (124). The linked chromosomal segment harbored the MRC1 
gene. This gene encodes a mannose receptor present in macrophages and immature dendritic 
cells, where it is involved in phagocytosis of bacteria. Hence, the MRC1 gene was tested as a po-
sitional candidate leprosy gene. A SNP G396S (rs1926736) in exon 7 of the MRC1 gene was found 
to be associated with leprosy per se and multibacillary leprosy in Vietnamese and Brazilian, but 
not Chinese, patients (125, 126). Two non-coding variants of MRC1 located in intron 5 and intron 
7 were associated with paucibacillary leprosy in Chinese but not Vietnamese patients (126, 127). 
The differences between the risk markers across studies suggest that more than one variant of 
MRC1 may play a role in leprosy pathogenesis. Subsequently, high density association mapping of 
the 10p13 region evaluated 39 genes for association with leprosy per se and clinical manifestation 
of the disease (127). In these experiments, the Cubin (CUBN) and Nebulette (NEBL) genes were 
found to be associated with multibacillary leprosy in two independent Vietnamese populations 
(127). Hence, contrary to expectations, the majority of associations of genetic polymorphisms in 
the 10p13 region were either with leprosy per se or multibacillary leprosy, but not with pauci-
bacillary leprosy. The reason(s) for this unexpected observation is (are) not known.

Region 6q25-q26

A second linkage hit for leprosy was located on chromosome region 6q25-q26 (124). High resolu-
tion association mapping of 43 genes located in the 6q25-q26 locus pointed to the co-regulatory 
region of the PARK2 and PACRG genes as the main association signal with leprosy per se (128). 
The association of PARK2/PACRG variants was confirmed in independent samples from Vietnam, 
India, and Brazil (64, 128, 129, 130, 131). Specifically, the PARK2 promoter variant rs9356058 
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was shown to be a global risk factor in leprosy per se (130). A second independent signal of as-
sociation in the PARK2/PACRG locus was represented by the SNP rs10400079 but was only ob-
served in early onset cases of leprosy (130). Interestingly, the same polymorphisms associated 
with susceptibility to leprosy per se were also risk factors for infection with Salmonella typhi and 
S. paratyphi A in Indonesia (132). PARK2 is a key regulatory element in the production of IL6 and 
CCL2 by human macrophages, and stimulation of whole blood with M. leprae sonicate triggers 
the transcriptional activation of both immune mediators (133). Interestingly, in the latter assay, 
transcript levels of both IL6 and CCL2 were significantly correlated with the presence or absence 
of PARK2 leprosy susceptibility alleles (130, 133). PARK2 encodes the E3-ligase Parkin, which is the 
cause of a small number of cases with early onset Parkinson’s disease (134, 135). Parkin ubiquiti-
nates phagosomes containing an intracellular macrophage pathogen, which destines the tagged 
vesicles and their microbial content for destruction by autophagy (136, 137, 138). While these 
findings identify PARK2 as an effector gene of innate immunity, the mechanistic details of how ge-
netic leprosy risk variants modulate the Parkin function and its microbicidal activity are unknown.

Region 6p21

Independent studies have reported a linkage peak for leprosy per se on chromosome region 
6p21.3 in the human leukocyte antigen (HLA) complex (124, 139, 140). High-resolution linkage 
disequilibrium mapping of the 6p21.3 locus led to the identification of the LTA gene in HLA class III 
and the HLA-C gene in HLA class I as independent signals of association with leprosy per se (141, 
142). Lymphotoxin alpha (LTA) is an important mediator for lymphocytes recruitment in response 
to infection (143, 144). The LTA +80 SNP (rs2239704) was identified as a risk factor for leprosy per 
se in India, Vietnam, and Brazil, with a stronger risk effect before the age of 25 (141). The leprosy 
per se risk allele “A” of LTA +80 disrupts an ABF1 binding site, resulting in lower LTA expression 
(145). Fine mapping of the HLA class I locus identified an SNP variant tagging the HLA-C*15:05 al-
lele in association with leprosy per se in two population samples, one from Vietnam and one from 
India (142). The variants associated with leprosy correlated with higher HLA-C expression (142).

Candidate gene approaches have long reported genes in the HLA region associated with leprosy 
(146). In the HLA class III region, the promoter polymorphisms located at -238 (rs361525), -308 
(rs1800629), and -1031 (rs1799964) of the TNF gene were associated with leprosy per se and/
or a clinical subtype in different ethnic groups (11, 139, 147, 148, 149, 150, 151). The TNF gene 
encodes a potent inflammatory mediator that is essential for granuloma formation in response 
to Mycobacteria (152). Moreover, variants tagging the BAT1, NFKB1L1, LTA, TNF, and BTNL2 genes 
were associated with leprosy per se in unrelated samples from India (153). In the HLA class I re-
gion, the truncated allele *5A5.1 of the MICA gene was associated with leprosy per se in India 
(154). The HLA-B*13:01 allele was identified as a risk factor for Dapsone hypersensitivity syn-
drome, a condition that affects 1% to 1.5% of leprosy cases with an estimated 10% chance of 
mortality (155). In addition, a combination of killer cell immunoglobulin receptor (KIR) and its 
respective HLA class I ligands was associated with leprosy per se in a population from Brazil (156, 
157). In the HLA class II region, different alleles of the HLA-DRB1 gene were identified as risk fac-
tors for leprosy per se and clinical subtypes (46, 158, 159, 160, 161, 162, 163, 164). The HLA class 
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II molecules are expressed on antigen-presenting cells (APC) such as dendritic cells and macro-
phages, and they play an important role in the communication between APC and CD4+ T-cells 
during the early phase of the inflammatory response (165). Taken together, the HLA locus is the 
genomic region with the highest concentration of leprosy risk factors.

Additional chromosomal regions

Additional chromosomal regions have been shown to be linked to leprosy phenotypes by in-
dependent GWLS. The chromosome regions 20p13 and 20p12 were linked to leprosy per se in 
Brazilian and Indian families, respectively (140, 166). Chromosome region 17q11-q21 was linked 
to leprosy per se in Brazilian patients, while the region 17q21-q25 was linked to Mitsuda reac-
tivity in Vietnamese families (121, 167). The ERRB2 gene located on chromosome region 17q12 
has been selected as a positional candidate gene for leprosy per se in the 17q11-q21 locus. The 
ERBB2 gene encodes a surface receptor in the Schwann cell that is used by M. leprae for cellular 
invasion (168). ERRB2 alleles were associated with susceptibility to leprosy per se in some, but not 
all, Brazilian samples (169, 170). A GWLS reported a linkage hit for leprosy per se on chromosome 
regions 2p14, 8q24, 4q22, and 16q24 in Chinese families (171). The leprosy susceptibility genes 
underlying these linkage hits are not known.

Summary of linkage studies

Linkage studies have been successfully used in the analysis of host susceptibility to leprosy. Link-
age peaks led to the subsequent identification of two of the most replicated associations with 
leprosy. A linkage peak on chromosome region 6q25 led to the identification of the PARK2 gene 
as the first gene identified by positional cloning in a common infectious disease. The linkage peak 
on the 6p21.3 chromosomal region led to the identification of variants near the HLA-C, LTA, and 
HLA-DR / HLA-DQ genes as leprosy risk factors. Interestingly, these findings were later confirmed 
by GWAS. While linkage analysis was superseded by GWAS, with the advent of next generation 
sequencing, linkage analysis is now increasingly used to identify rare variants causally associated 
with disease susceptibility.

THE GENOME WIDE ASSOCIATION APPROACH
GWAS in infectious diseases have not been as successful as in other phenotypes (172). Compared 
to other common infectious diseases, leprosy has the advantage that the genetic variability of the 
M. leprae is extremely low and essentially worldwide cases of leprosy are infected by a mono-
clonal bacterium (25, 173). To what extent the monoclonality of M. leprae underlies the success 
in mapping host genetics factors in leprosy is not known. The first GWAS performed in leprosy 
reported six genomic loci near the HLA-DR-DQ, RIPK2, TNFSF15, LRRK2, CCDC122/LACC1, and 
NOD2 genes associated with leprosy per se in a Chinese population (174). The associations of 
HLA-DR alleles with leprosy had been well documented previously; however, the other GWAS loci 
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pointed to new susceptibility genes. Studies in population samples from Vietnam, India, West-Af-
rica, and Brazil validated the association of variants near the RIPK2, CCDC122/LACC1, and NOD2 
genes with leprosy per se, supporting the robustness of the GWAS results in leprosy (175, 176, 
177, 178). The LRRK2 gene was tagged by a suggestive hit in the initial GWAS and was not consis-
tently associated with leprosy per se or a clinical subtype in independent populations (175, 176, 
179, 180). Conversely, the association of the TNFSF15 locus with leprosy per se was not replicated 
in follow-up studies (175, 176, 177). Unexpectedly, variants near the TNFSF15 region were as-
sociated with T1R but not leprosy per se in a Vietnamese sample (181). Moreover, the TNFSF15 
variants belonged to a larger group of highly correlated SNP that extended from the TNSF15 lo-
cus to the neighboring TNFSF8 gene. The role of TNFSF8 in T1R was further strengthened by the 
observation that all of the T1R SNPs, including those located within TNFSF15, were expression 
quantitative trait loci (eQTL) for TNFSF8 (181). The detection of eQTL signifies that the genotypic 
constellation at a given set of SNPs is correlated with the expression levels of a given gene. The 
variants overlapping TNFSF8 were validated for the association with T1R in independent Brazilian 
samples (181). A similar situation was observed for the LRRK2 gene. In a Vietnamese sample, a 
missense M2397T polymorphism (rs3761863) previously reported as a leprosy per se risk factor 
was significantly associated with T1R but not leprosy per se (182). Most of the leprosy suscepti-
bility genes identified by the GWAS also were associated with inflammatory bowel disease (IBD), 
suggesting an overlap in the pathogenesis between the two diseases (183). However, the demon-
stration that a subset of these genes predisposes to T1R rather than leprosy per se suggested that 
the overlap between IBD and leprosy not only may be found in the response to mycobacteria but 
also may be an innate predisposition of some hosts to undergo excessive inflammatory responses 
that lead to tissue damage.

The number of subjects enrolled in the first leprosy GWAS was expanded twice (49, 184). The 
first expansion resulted in the discovery of two additional leprosy per se loci near the IL23R and 
RAB32 genes, respectively (49). The variants in the IL23R region were validated in a Vietnamese 
population (185). An association of the RAB32 variants and leprosy per se was also observed in a 
Vietnamese population. However, the most significant SNPs in the Vietnamese sample were not 
the same as those observed in the Chinese GWAS, suggesting that the true causal variant remains 
to be established (49, 185). Six additional GWAS loci were associated with leprosy per se in the 
second subject expansion of the Chinese GWAS population (184). However, these findings are yet 
to be validated. Interestingly, one of the new GWAS loci near the COX4I1 gene falls within a previ-
ous linkage peak for leprosy per se on chromosome region 16q24.1 (171).

Conclusion
Studies of the host genetic component in leprosy have discovered new genes and candidate path-
ways that contribute to disease pathogenesis. Many of the findings were confirmed by studies in 
ethnically distinct populations, thereby demonstrating the fundamental importance for leprosy 
susceptibility of the pathways tagged by host genetic studies. Despite the progress made in deci-
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phering the contribution of host genetic variants to leprosy pathogenesis, a comprehensive pic-
ture has not yet emerged. Notably, the lack of diagnostics for latent infection and our continued 
ignorance of the mode of dissemination of M. leprae prevent a study of the genetic controllers of 
these important stages of leprosy pathogenesis. Following the impressive success in identifying 
genetic modulators of leprosy susceptibility, additional contributions will depend on the study of 
more refined phenotypes such as early onset cases or subgroups of the generalized leprosy per 
se phenotype. For example, recent studies have indicated that the genetic contribution to leprosy 
susceptibility differs between children/adolescents and adults. Moreover, the contribution of epi-
genetic processes and the role of rare genetic variants impacting on the primary protein structure 
and biological function in leprosy are largely unknown. An important feature derived from recent 
data was the genetic overlap of leprosy with IBD and Parkinson’s disease. Perhaps by restricting 
our investigations to the commonalities between these apparently unrelated phenotypes, we will 
be able to identify novel pathways and regulators of host immune responses in leprosy.
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